xbns.net
当前位置:首页 >> 平面向量的所有公式 >>

平面向量的所有公式

1、加法 向量加法的三角形法则,已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC.2、减法 AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连中点、指被减.-(-a)=a

1、向量的加法 向量的加法满足平行四边形法则和三角形法则.AB+BC=AC.a+b=(x+x',y+y').a+0=0+a=a.向量加法的运算律:交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c).2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 AB-AC=CB.即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且λa=λa.当λ>0时,λa与a同方向; 当λ1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ0)或反方向(λ

平移变换 y=f(x)→y=f(x+a),y=f(x)+b 注意:()有系数,要先提取系数.如:把函数y=f(2x)经过 平移得到函数y=f(2x+4)的图象. ()会结合向量的平移,理解按照向量 (m,n)平移的意义. 对称变换 y=f(x)→y=f(-x),关于y轴对称 y=f(x)→y=-f(x) ,

设a=(x,y),b=(x',y'). 1、向量的加法 向量的加法满足平行四边形法则和三角形法则. AB+BC=AC. a+b=(x+x',y+y'). a+0=0+a=a. 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c).

设a=(x,y),b=(x',y'). 1、向量的加法 向量的加法满足平行四边形法则和三角形法则. AB+BC=AC. a+b=(x+x',y+y'). a+0=0+a=a. 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c). 2、向量的减法 如果a、b是互为

1、向量的的数量积 定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作ab.若a、b不共线,则a&

1、向量的的数量积 定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作ab.若a、b不共线,则ab=|a||b|cos〈

两个向量a,b平行:a=λb (b不是零向量);两个向量垂直:数量积为0,即 ab=0坐标表示:a=(x1,y1),b=(x2,y2)a//b当且仅当x1y2-x2y1=0a⊥b当且仅当x1x2+y1y2=0

向量的运算加法运算向量加法的定义 已知向量a、b,在平面上任意取一点A,作AB=a,BC=b,再作向量AC,则向量AC叫做a与b的和,记做a+b,即a+b=AB+BC=AC AB+BC=AC,这种计算法则叫做向量加法的三角形法则.(首尾相连,连

就这些基础的了 打得很麻烦的~~+法 a代表a向量 b代表b向量1、三角形法则 2、平行四边形法则设a=(x1,y1),b=(x2,y2),则:a+b=(x1+x2,y1+y2)-法三角形法则:设a=(x1+y1),b=(x2,y2),则:a+b=(x1-x2,y1-y2)a*b=b*a1)ab=xm+yn 2)a+b=(x+m,y+n)a⊥b时,a*b=xm+yn=0a‖b时,a*b=xn-ym=0 模的算法会吧!就和直角三角形球直角边一样的

网站首页 | 网站地图
All rights reserved Powered by www.xbns.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com